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The AD–AHP planner: Incremental path planning for robots 

incorporating decision theory 

KOMLÓSI István1

Path planning for mobile robots in dynamic environments with many objectives to regard at once is challenging 

and often impossible. However recent outdoor robot- ic applications encounter many situations when such an 

approach is needed. This paper presents a path planning method for mobile robots that incorporates deci- sion 

theory to guide the search. The method is able to handle an arbitrary number of objectives at the same time and 

also enables the incorporation of human logic into the planning process. All parts of the algorithm suit real–time 

implementation. 

Introduction 

Recent developments in field robotics and autonomous vehicles have raised the demand for advanced and intelligent 

navigation systems capable of planning safe and dynamically feasable trajectories while minimizing objectives like path 

length, energy cost and trip time. In a dynamic environment the relevance of the objectives and their relation to each other 

can also change rapidly, i.e. if the robot has limited time to reach its goal destination minimizing the total trip time has 

higher priority over energy consumption until changes in the environ- ment like a sudden blockade on its previously 

planned path forces the robot to choose a more energy efficient yet more time consuming path. 

In the case of unmanned ground vehicles, when passing through rugged terrain the robot can be exposed to risk. 

Consider a planetary rover with limited battery charge and limited time to reach its destination. The robot has to navigate 

through a canyon where the solar cells cannot recharge the robot’s battery efficiently. At the same time the robot is 

exposed to the risk of turning over on the rocky surface or getting trapped due to falling rocks. The robot’s navigation 

system has to be capable of planning an energy efficient but safe path avoiding dangerous areas while incorporating the 

risk of getting trapped within the canyon. In the case of the Mars rovers such an operation could result in losing the robot. 

Robots applied in military operations can also be exposed to significant risk. Consider a military robot that has a 

rescue mission. It has limited time to reach its destination and also a limited battery charge that it must not consume 

before it reaches the goal state. Between the robot’s current state and the goal destination lies a mine field. The robot’s 

navigation system has to be capable of planning a safe path while continously evaluating the risk of damage when 

passing through the mine field. 

Robots often have to navigate in dynamic and cluttered environments with imperfect in- 

formation on the terrain. Efficient replanning of the path is needed since a previously planned 
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path can be invalidated by obstacles like falling rocks, or due to imperfect map information when new sensory 

information received show previously low risk areas to be high risk areas. 

Optimizing many objectives at once is challenging. The robot’s path planning problem results in minimizing a 

dynamically changing multi–cost function. Minimizing such a cost function can be time consuming and computionally 

cumbersome. Also the robot has to per- form this operation frequently when replanning is needed. Instead of finding the 

minimum of such a cost, function decision theory has to be incorporated into the path planning process. 

We propose a modified version of the widely used D* algorithm, where determining the 

focus of the search is performed using the Analytic Hierarchy Process (AHP) method. 

This paper is organized as follows. In the next section the AHP method is discussed fol- lowed by a short overview 

on incremental planners for robots. After that we introduce the AD–AHP method that incorporates decision making into 

the incremental planner. After the simulationresults the conclusion ends the study. 

 

The Analytic Hieararchy Process 
 

The Analytic Hierarchy Process introduced in the relevant documents (Saaty, 1980), (Saaty, 

1988) is an efficient method for multi–criteria decision making. Given a set of alternatives and a set of criteria AHP selects 

the best alternative. The AHP method has been used in machine learning for artifitial intelligence applications (Kong, 

Liu, 2005), also it proved to be useful in military engineering for selecting optimal military equipment (Gyarmati, 

Kende, Felházi, 

2009), (Gyarmati, 2006), (Kavas, 2009). The study (Fallahi, Leung, Chandana, 2009) intro- duces a method where the 

Fuzzy–AHP was used along with the Ant Colony Optimization path planner for selecting an appropriate UAV for a 

mission. Another application has shown AHP to be useful in disaster management (Mali, Rao, Mantha, 2013) where 

finding the best root in an emergency case was carried out by Dijkstra’s algorithm on a graph where the arc costs were 

determined by AHP. The study (Vaidyaa, Kumarb, 2006) gives a general overview on recent AHP applications. 

As given in the decision matrix below, the decision system has M alternatives and N cri- teria. The entries of the 

decision matrix are the performance values of the alternatives within each criterion. To determine the best alternative 

these entries are weighed by the weighing coefficients that express the importance of a criterion. 
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Analytic Hierarchy Process performs pairwise comparison within each criterion. A judge- ment matrix has to be 

established for each criterion (not to be confused with the formally mentioned decision matrix) 

 
 
 
 
 
 

 
where a =1/a are values from the relative scale of importance according to Saaty’s book 

ij  ji 

(1980). When a a =a is satisfied for all entries in the matrix then the judgement matrix is 
ik   kj  ij 

consistent. Judgement matrices are often inconsistent since human decisions cannot always 

assure consistent rankings. The W weighing coefficients can be derived from calculating the 

priority vector according to the judgement matrix for the criteria. 

AHP works as follows. One has to determine the priority vector that is the right principal eigenvector of the 

judgement matrix for each C criterion. It has been shown in article (Saaty, 

2003) along with other thoughts on the priority vector that it must be the right principal ei- 

genvector of the judgement matrix that satisfies 
 

Aω=λ  
max 

 

where λ  
max 

is the maximal eigenvalue and ω is the eigenvector. This is especially import- 

ant in the case of inconsistent matrices. One way to obtain the priority vector is to approxi- 

mate it by taking the geometric means of each row and then normalizing them by their sum so that the entires of the 

priority vector can be approximated by 
 

 
 

Next the consistency index CI has to be estimated so that it can be derived from the formula 
 

 
 

The consistency ratio CR is to be calculated by dividing the consistency index by the Random Consistency Index 

that is often given in tables (Saaty, 1980) as a function of n. The consistency ratio refers to the consistency property of 

the judgement matrix. It has been shown in (Saaty, 1980) that if the consistency ratio is greater than 0.1 it is preferable to 

rees- tablish the judgement matrix. 
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The entries of the decision matrix are the entries of the priority vectors for each criterion. The final priorities can be 

calculated by taking the scalar product of each row according to the alternatives and the weight vector that is 

 
 

where Ai
 

 

the final priority of the ith alternative. 

 

Incremental planning 
 

Robot path planning in dynamic environments has been in the focus of robotics research for a long time (Latombe, 

1991). Many methods have proven to be efficient and useful. The study (LaValle, 2006) gives a general overview on 

planning algorithms. The popular poten- tial field’s method (Hwang, Ahuja, 1992) has proven to be efficient for simple 

path planning tasks. Since it suffers from the problem of getting trapped in local minima, different versions of this method 

were developed to overcome this difficulty (Fox, Burgard, Thrun, 1997), also the Probabilistic Road Map method has 

been widely introduced (Kavraki, Svestka, Latombe, Overmars, 1996). The likewise popular Rapidly Exploring Random 

Tree (RRT) method in- troduced in (LaValle, 2006) also has many variants (Ferguson, Kalra, Stentz, 2006), (Fergu- son, 

Stentz, 2006a), some of them are capable of planning in high dimensional search spaces (Ferguson, Stentz, 2007). Soft 

computing methods like genetic algorithms can be incorporat- ed in path planning, also neural networks and fuzzy–

systems have been widely used for this task (Li, Yang, Seto, 2009). The (Yanduo, Kun, 2009) study presents a path 

planning method, using Liquid State Machines, that is a member of the family of recurrent neural networks, and shows 

promising results (Maass, Natschlaeger, Markram, 2002). 

When detailed information on the terrain is available in the form of a map for the robot’s navigation system, map 

based path planners prove to be useful. Among map based planners grid based path planning methods were frequently 

addressed since incremental planners like A* (Hart, Nilsson, Raphael, 1968) are capable of solving the planning 

problem. The main idea of grid based path planning is dividing the map into cells where each cell has an associ- ated 

traversal cost. When a cell is occupied by an obstacle the cell’s traversal cost is set to a high value (or to infinity). A 

graph is built where the graph nodes correspond to the corner or the center of the grid cells while the edge costs 

correspond to the traversal cost of the cells. The objective of minimizing the overall path cost, which is the sum of the 

traversal costs of the cells the robot passes through, can be performed by finding the shortest path in the cor- 

responding graph. 



2 http://www.robodesign.ro/marius/my-projects/illustrations/motion-planning (downloaded: ca. 2013) 
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Figure 1. The concept of grid based planning2
 

 

 
Incremental planners keep a record of the path cost of every visited node. At the same time a heuristic cost is 

estimatated from the dedicated node to the goal or to the start state depending on the search direction. Each visited node 

is inserted into a priority queue called an open list with a key value that is the sum of the path cost and the heuristic cost 

estimate. When the heuristic does not overestimate the real path cost to the goal the resulting path will be optimal. The 

open list thus contains the potential nodes that the search can be continued from and the search is focused towards the 

node with minimal key value on the open list. The heuristic cost estimate focuses the direction of the search and vastly 

influences the optimality of the solution. Finding efficient heuristics in a multi–cost environment is challenging and is 

often impossible in high dimensional search spaces. 

Every time a node is expanded, i.e. its neighbours are visited, it is taken off the open list. Incremental planners also 

maintain a list for backpointers. When a previously visited node is revisited by expanding a node from the open list and 

the node’s cost value decreases due to the expansion the state is updated, that is, the cost value is set to the decreased 

value and the node’s backpointer is set to the expanded node. This way the algorithm can keep a record of the best path 

obtained so far. 

The D* algorithm (Stentz, 1994) is the dynamic version of A*. It has been proven to be at least two orders of 

magnitude more efficient than planning from scratch with A* when chang- es in the arc costs occur. The main idea was to 

regard only those affected states that could potentially improve or invalidate the previously planned path. A one step 

lookahead of the path cost is used for this reason to identify inconsistent states where arc costs have changed. When the 

grid resolution of the map was insufficient but the process had to operate with fixed memory capacity, the Multi–

Resolution Field D* (Ferguson, Stentz, 2006b) algorithm was developed, which is now currently used as the primary 

path planner along with TEMPEST onboard the Mars rovers Spirit and Opportunity (Carsten, Rankin, Ferguson, Stentz, 

2007). 

http://www.robodesign.ro/marius/my-projects/illustrations/motion-planning


3 http://www.universetoday.com/50930/mars-rover-pictures/ (downloaded: ca. 2013) 
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Figure 2. Mars rover3
 

 
In a large state space, as mentioned above, efficient heuristics are needed to focus the search. Another way to deal 

with the large number of states is to define dominance relations. The DD* algorithm (Korsah, Stentz, Dias, 2007) 

efficiently prunes the search space by using dominance relations, i.e. when a node is dominated by another by the mean 

of dominance, the search will be aborted from the dominated node. In a rapidly changing environment non– dominated 

states can turn dominated and vice–versa. 

The most recently introduced member of the D* family is the Anytime Dynamic A* (AD*) planner (Likhachev, 

Ferguson, Gordon, Stentz, Thrun, 2005), which is capable of planning in rapidly changing environments by continously 

improving previous solutions through refin- ing its heuristic cost estimate. Since it is an anytime algorithm it runs until 

elaboration time allows and within the given time frame it produces a path with a suboptimality bound. 

We will take the AD* planner as a basis of the AD–AHP algorithm that is introduced in the next section. 

 

The AD–AHP path planner 
 

The AHP improved AD* algorithm works as follows. Instead of determining a single cum- mulative cost function that 

sums up all costs, i.e. path length, time, energy, risk, etc. with given weights and instead of defining dominance 

relations a priority queue is maintained for each cost function where nodes are inserted with their corresponding key 

values when visited. The key values similarly to the basic operation are the sum of the given cost (i.e. energy cost, time 

cost) and the heuristic cost estimate. The cost of risk can be expressed as a probability value so the key value of a node 

on the “risk open list” must be calculated using an appropriate method in probability theory. It is assumed that the 

ranking of the objectives is done by another process that monitors the robot’s vicinity constantly and decides the best 

ranking of the objectives in any situation. Some neural network approchaes like the Learning Vector Quantization (LVQ) 

method (Kohonen, 1995) could be used for this reason. 

First the start state is inserted into each open list and the neighbouring nodes of the start state are visited. For each 

visited node a cost value, a one step lookahead and a heuristic cost estimate is calculated according to all cost functions. 

The visited nodes are then inserted into the corresponding priority queues. 

The next step is to determine which node to select for expansion. Given the actual ranking of the criteria, i.e. the 

ranking of the different costs and given a finite set of alternatives, i.e. graph nodes with minimun key values in each 

priority queue by using AHP, the best node to 

http://www.universetoday.com/50930/mars-rover-pictures/


AARMS  (12) 2 (2013) 295 

 

KOMLÓSI István: The AD–AHP planner: Incremental path planning for robots incorporating decision theory 
 

 

continue the search from can be determined. The AHP procedure has to be performed every time before taking a node off 

the open lists. It is wise not to take only the nodes with the best key values but to take nodes from a finite horizon, say the 

four or five best nodes in order to gain a greater set of alternatives. Of course, this could result in extra computational 

expense. 

A quintessential question of the method is when to update a node’s cost value if it is re- visited, since an 

improvement in energy cost could result in an increase in the time cost and vice–versa. The main idea is to update states 

according to the weight vector of the criteria. Let 

us denote the actual path length of the current node with d , its energy cost with E , time–cost 
0  0 

with t , and the cost or probability of risk with r . Assume that after updating the state one gets 
0  0 

d , E , t , r , for the same values. The change of the values can be expressed in proportions 
1  1      1      1 

of each other in a vector. This vector is then multiplied by the weight vector of the criteria 

that is assumed to be normalized to unity. Given the weighing coefficients w ,w ,w ,w , when 
d      E      t      r 

 
 
 
 
 
 
 

is satisfied, the state can be updated, i.e. the cost values are set and the node’s backpointer is set to the currently 

expanded node. It is assumed that all values are nonnegative, and zero entries in the above equation should be discarded 

and left out of the comparison. 

The algorithm operates on as AD*, after reaching the goal state the heuristics are im- proved and the search restarts. 

It has to be mentioned that if a dramatic change in the envi- ronment or a dramatic reordering of the objectives occurs, 

it is wise to replan from scratch instead of trying to improve already existing solutions. 

The main advantage of this approach is that human logic can be incorporated into the path planning process and 

thus an arbitrary number and arbitrary kinds of objectives can be handled at once. The robot can often find itself in 

situations when ranking the objectives by importance requires human experties. If the robot’s navigation system is 

capable of learning, with human aid, it is possible for the robot to build up and contniuosly update a database of the 

rankings and apply the previously mentioned LVQ or some other method to determine the proper ranking when it finds 

itself in unfamiliar situations. 

The formal description of the AD–AHP can be found in the Appendix. The main steps are of AD* (Likhachev, 

Ferguson, Gordon, Stentz, Thrun, 2005), the relevant modifications are where the AHP was incorporated into the 

algorithm. 

 

Simulation Results 
 

Simulations were carried out with four objectives, for cell traversal costs the cost values according to the different 

objectives were set randomly. Given was a start state, a goal state and three obstacles. The robot was regarded a point 

robot. Fig. 3. – Fig. 6. show the result of the path planning when each objective was regarded independently. On each 

picture the cells with a darker shade have higher cost value. On Fig. 7. and Fig. 8. the results can be seen when the planner 

had to regard all objectives at once first with weight vector  and then with weight vector . 
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Figure 3. Planning results with the first objective Figure 4. Planning results with 

the second objective Figure 5. Planning results with the third objective Figure 6. 

Planning results with the fourth objective 
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Figure 7. Planning results with all objectives with the first weight vector 

Figure 8. Planning results with all objectives with the second weight vector 

Conclusions 

We have introduced a novel incremental planner that is capable of planning collision free trajectories for robots in a 

dynamic multi–cost environment while incorporating decision the- ory. Instead of using a single cost function and state 

dominance, Analytic Hierarchy Process was used along with AD* to determine the focus of the search. The advantage 

of the algo- rithm is that very different objectives can be handled at the same time with the incorporation of human logic. 

All parts of the algorithm suit real–time implementation. 
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Appendix 

Notation 

s state 

g(s) cost vector of state S 

rhs(s) one step lookahead cost vector of state S 

s' neighbour state of  S 

h(s,s ) heuristic cost estimate vector from state s  to the starting state 

Pred(s) predecessor states of  S Succ(s) successor states of 

S bptr(s) backpointer of  S 

OPEN priority queue for states to expand CLOSED queue for states 

removed from OPEN INCONS queue for inconsistent states 

ε suboptimality bound 

./ element by element division

Main () 

01. 

02. 

03. CLOSED = INCONS = ∅

04. for each criterion OPEN = ∅

05.

06. calculate weights for all criteria and store them in W

07. insert s into every OPEN with key (s  
goal

08. ComputeorImprovePath();

09. publish current ε suboptimal solution

10. forever

11. if changes in the weights are detected

12. update weight vector W

13. if changes in edge costs are detected

14. for all directed edges (u,v) with changed edge cost

15. update edge costs according to each criteria

16. UpdateState(u);

17. if significant edge cost changes were observed

18. increase ε or replan from scratch

19. else if ε > 1

20. decrease ε

21. if significant changes in the weights were observed

22. replan from scratch

23. Move states from INCONS  to all OPEN;

24. CLOSED = ∅
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25.   ComputeorImprovePath(); 

26.   publish current ε – suboptimal solution; 

27.   if ε = 1 

28.   wait for changes in edge cost and in weights 

 
ComputeorImprovePath () 

01.   while (key( s = SelectMinState(OPEN,W)) < key(s 
 
) OR g(s 

 
) ≠ rsh(s ) ) 

02.   remove s from OPEN 

03.   if WT (g(s)./ rsh(s)) > WT (rhs(s)./ g(s)) 

04.   g(s) = rhs(s); 

05.   CLOSED = CLOSED ∪ {s} 
06.   for all s' ∈ Pred(s) UpdateState(s'); 
07.   else 

08.   g(s) = ∞ ; 
09.   for all s' ∈ Pred(s) ∪ {s} UpdateState(s'); 

 
UpdateState (s) 

01.   if s was not visited before 

02.   g(s) = ∞ ; 

start start start 

03.   if (s ≠ s ) 
goal 

04.   s' = SelectMinState(Succ(s),W) ; 

05.   rhs(s) = g(s') + c(s,s') ; 

06.   bptr(s') = s; 

07.   if ( s ∈ OPEN ) remove s from OPEN 
08.   if (g(s) ≠ rhs(s)) 

09.   if s ∉ CLOSED 
10.   insert s into OPEN with key( s ); 

11.   else 

12.   insert s into INCONS ; 

 
key (s) 

01.   if WT (g(s)./ rsh(s)) > WT (rhs(s)./ g(s)) 

02.   return [rhs(s) + ε · h(s ,s); rhs(s)]; 

03.   else 

04.   return [g(s) + h(s 

start 

 
,s); g(s)]; 

start 

 

SelectMinState (OPEN, W) 

01.   for all OPEN ∈ OPEN 
02.   select s with minimum key on OPEN for all criteria 

03.   establish judgement matrices with s as alternatives with according cost 

04.   calculate priority vectors 

05.   establish decision matrix 

06.   select best alternative according to W 

07.   return best alternative 



AARMS  (12) 2 (2013) 301 

 

KOMLÓSI István: The AD–AHP planner: Incremental path planning for robots incorporating decision theory 
 

 

SelectMinState (Succ(s), W) 

01.   for all criteria 

02.   establish judgement matrices with s' ∈ Succ(s) as alternatives 
03.   calculate priority vectors 

04.   establish decision matrix 

05.   select best alternative according to W 

06.   return best alternative 

 




